
Reshaping Bonsai: Pruning LLMs Using Comprehensive Metrics

Vashisth Tiwari
vashistt@andrew.cmu.edu

Amanda Li
xal@andrew.cmu.edu

Emily Guo
epguo@andrew.cmu.edu

Abstract

This project builds upon Bonsai (Dery et al.,
2024), a forward-only regression-based neu-
ral network pruning method. We focus on
improving model performance with respect
to a specific downstream task of improving
mathematical and logical reasoning (with a
special focus on the GSM8K (Cobbe et al.,
2021) dataset) and introduce a novel met-
ric designed to capture more information
about the model’s performance. This metric
combines lexicographical similarity, semantic
similarity, and accuracy as comprehensive
components with which to evaluate the an-
swers generated by our model against the
ground truth. From our experimentation, we
found that models pruned with respect to
this novel metric outperformed the baseline
model from our previous report on logical
benchmarks with 0.5 target sparsity. We also
note that pruning with respect to GSM-8k
in the CoT prompt fashion as described in
the paper leads to better performance than
the baseline.

Code can be found at this repository: https:
//github.com/Vashistht/anlp-project.

1 Introduction

Large Language Models (LLMs) have shown remark-
able abilities across multiple complex tasks. How-
ever, these models with billions of parameters require
significant and prohibitively large computational re-
sources. In the light of this problem, pruning has
emerged as a popular method for compressing neural
networks alongside others like quantization. Prun-
ing refers to the process of shrinking the size of the
model by removing specific weights while striving to
preserve performance of the original network, often
with respect to a downstream task. (Sun et al., 2023)

Recent literature has shown that sufficiently large
language models can exhibit reasoning abilities, the
exact extent of which (and the relationship between
these reasoning abilities and model size) is unclear
(Huang and Chang, 2022). While model pruning has
been extensively researched, we find that very few
include model performance on reasoning tasks as part
of their tabulations, and the ones that do typically

incorporate knowledge graphs as a significant part
of their model architecture (Ren and Zhu (2022), Su
et al. (2024), Sun et al. (2021)). In this work we
focus on pruning with a specific focus on improving
mathematical reasoning of pruned models. In the
following sections we motivate why this problem is
important and related previous work.

2 Background

2.1 Pruning Overview

The two categories of pruning are structured and
unstructured. Unstructured pruning removes spe-
cific individual parameters from the model. This
results in more sparse weight metrics with a reduced
memory footprint. However, a key downfall is that
any real inference speedups are not possible with-
out specialized hardware. Semi-structured sparsity
(2:4, 4:8) that can make use of specialized hardware
is known to degrade the performance even further
than unconstrained unstructured pruning and are
less effective than structured pruning methods (Sun
et al., 2023; Zhou et al., 2021).

Structured pruning, on the other hand, imposes
structured sparse patterns by taking a more modular
view of the model; here we remove entire units /
sub-modules of the model. These methods lead to a
significant speedup across all hardware but also lead
to more considerable performance loss.

2.2 Limitations of Gradient-Based Pruning
Methods

Most prior structured pruning approaches have fo-
cused on gradient-based pruning methods. While
these methods are memory and compute-efficient dur-
ing inference time, they are memory-bound at prun-
ing. Previous works have shown that the forward
pass of a popular optimizer like Adam, AdamW needs
to store ∼ 3x of the original model weights as it stores
the first and second order estimates (Loshchilov and
Hutter, 2019).

Thus, even for a half-precision (float16) LlaMA-
2-7B model with around 14 GB of trainable weights,
a method with backward passes needs an additional
28 GB memory bandwidth, making it extremely pro-
hibitive. See Table 1 for a more detailed summary.

1

https://github.com/Vashistht/anlp-project
https://github.com/Vashistht/anlp-project

Regime Resource Quantization Distillation Unstructured Pruning Gradient-Based Bonsai
(Mixed Precision) Structured Pruning

Train Memory ✓ ✓ ✓ × ✓
Compute ✓ × ✓ ✓ ✓

Inference Memory ✓ ✓ ✓ ✓ ✓
Compute × ✓ × ✓ ✓

Table 1: Landscape of resource consumption (memory and compute) of different model compression
methods at training time and the inference time resource consumption of the models they deliver. × means
the method incurs a prohibitive cost to the lay practitioner whilst ✓ denotes that it is a viable option with

respect to that resource ((Dery et al., 2024))

2.3 Improving LLM Reasoning

The seminal paper on Chain of Thought (COT)
(Wei et al., 2023) showed how generating a chain of
thought (intermediate reasoning steps) significantly
improves the complex reasoning abilities of large
language models. However, the chain of thought is
fundamentally tied to the model size and its ability
to generate intermediate reasoning steps. COT has
only been shown to be beneficial for sufficiently big
models. However, based on this idea, multiple works
have focused on incorporating a chain of thought in
model compression.

Notably, (Shridhar et al., 2023; Li et al., 2023) have
explored employing a chain of thought generated
from a larger teacher model to generate the rationale
and then training the smaller model to predict the
rationale. However, as discussed in (Xia et al., 2022),
distillation is prohibitively expensive. It requires
large amounts of unlabeled data and is expensive to
train.

On the other hand, fine-tuning based on a chain of
thought has also been employed and has been shown
to increase reasoning abilities. (Kim et al., 2023)
look at instruct tuning small language models with
a chain of thought rationales generated by the larger
model. In their work, they report an increase of
4.34% on the Big Bench Hard benchmark. Building
on these works, in the paper, we introduce a method
for reasoning incorporated pruning. Therefore, in
the work, we focus on finding ways to satisfy
the three following desired qualities:

1. Pruning Method that uses Forward-pass
only

2. Structured Pruning Method

3. Improved Mathematical Reasoning Per-
formance (via incorporating CoT-based
metric into pruning itself)

In the light of the following limitations, we draw
attention to the recent work by (Dery et al., 2024),
Bonsai, which is a forward pass-only, structured
pruning approach under memory limitations that is
more representative of an average practitioner. In
the next sections, we introduce Bonsai (in section
3 and our work that builds off Bonsai in section 4,
given our focus on reasoning tasks.

3 Bonsai: Method and Limitations

Bonsai is a forward-pass-only, structured pruning
method that decides which modules to prune from
the LLM based on estimates of module importance.
The estimate of module importance is done pertur-
batively by generating submodules and evaluating
their performance over a small number of samples.

As described in section 2.1, for a large language
model (LLM), Mθ, parameterized by θ ∈ RD, and
a utility function U that measures the model’s per-
formance on a target task, the objective is to prune
Mθ to create a smaller and more effective model.

Consider the model Mθ comprising of non over-
lapping modules m = mii ∈ [N] with corresponding
parameter counts s = sii ∈ [N] such that

∑
i si = D.

For structured pruning, we want to compress Mθ by
identifying accurate sub-models defined by subsets
of m.

For a sparsity target p, structured pruning can be
formulated as the following combinatorial optimiza-
tion problem:

m∗ = argmaxm̄∈Fp
U
(
M|m̄

)
where

Fp =

{
m̄ ⊆ m

∣∣∣∣ (∑
[j:mj∈m̄]

sj

)
≤ (1− p)D

}
(1)

Fp represents all sub-models that satisfy the spar-
sity threshold. The optimal sub-model M|m∗ has a
smaller memory footprint and faster inference due
to fewer modules compared to M.

In the setting we are working with (forward passes
only), we wish to estimate the solution to 1, without
any gradients. To do so, Bonsai performs a small
number of n evaluations to gather the relevance of
each module in M with respect to some metric U ,
upon which we can choose to retain the modules with
higher relevance scores and discard the ones with
lower relevance score. This gives us the dataset of
sampled sub-modules and their corresponding eval-
uated performances D = {m̄k, Uk}. Thus, we treat
the score estimation β as an under-specified regres-
sion problem given by the equation 2 where αm̄k

is
a binary mask which is 0 where we are dropping the
modules and 1 otherwise.

2

β̂ = arg min
β∈RN

 1

n

∑
(m̄k,Uk)∈D

(Uk − βTαm̄k
)2

+γ∥β∥2

(2)
Note that they combine different modules using

a mask, since creating every sub-model would be
too intensive. The interesting part is how they se-
lect sub-models for evaluation. Each sub-model has
some probability of being included, but instead of
uniformly sampling, methods from previous unstruc-
tured pruning metrics, for example Wanda (Sun
et al., 2023), is used instead. Overall, this method
prunes a certain fraction of the model [piter] upon
until the desired sparsity [p] is reached. The num-
ber of submodels per iteration [niter] is related to p
such that niter = ⌈ n

iter⌉ and iter = p
piter

. Putting
together we have the Bonsai Algorithm as described
in the Figure 1.

Figure 1: Bonsai Algorithm from Dery et al. (2024)

3.1 Limitations in Recreating & Deviations
from the Original Results

Dery et al. (2024) prune Llama-2-7B (Touvron et al.,
2023a) to 50% sparsity with the Bonsai method de-
scribed in Figure 1. The best model from the paper
uses the following hyper-parameters; this is the model
used as a comparison with respect to other models
in the 50% sparsity of Llama ∼ 3B (Touvron et al.,
2023b) parameter range. The results of the article
are reported in Table 3 of the Bonsai paper.
Best Bonsai Hyper−parameters
spa r s i t y_ra t i o =0.5 , masks_per_iter=200 ,

nsamples=32 prune_frac =0.05 , bsz=1

Here sparsity_ratio refers to the final sparsity
with respect to the original model [p]. Llama in both
our run and the original run was pruned to 50%.
masks_per_iter refers to the number of perturbative
evaluations required to obtain good estimates of
module importance after performing regression. The
number of these masks, the finer the pruning, but

the more time it takes. These performances are
evaluated across nsamples for each submodule.

However, for these settings, the authors report
that pruning takes ∼ 40 hours on the Nvidia
A6000 which has a 48GB memory. Trying to recre-
ate this, we faced considerable computational and
time limitations. We were unable to access this
exact machine and recreated benchmarks on vari-
ous Amazon Web Service Elastic Compute Cloud
machines in the Accelerated Computing G Family
(g4dn.2xlarge, g5.2xlarge) that met the necessary
memory requirements to load the full weights of
Llama-2 7B (Touvron et al., 2023b). Interestingly,
Bonsai was aiming to alleviate memory-related issues
because they avoided computing gradients and devel-
oped a memory-friendly structured pruning method.
The underlying irony is left as an exercise for the
reader.

Given the time and computing constraints, we had
to edit the hyperparameters of the main model in the
paper. We reproduce a version of the pruned Llama-
2 7B model (Touvron et al., 2023a) with respect to
the Wikitext-2 (Merity et al., 2016a) dataset with
the following hyperparameters.

Our LLama−7B Hyper−parameters
spa r s i t y_ra t i o =0.5 , masks_per_iter=100 ,

nsamples=8 prune_frac =0.2 , bsz=1

In our sample tests and according to the paper, the
biggest contributor to latency was the lower prune
fraction in the original paper. As can be seen in
Figure 1, it takes ⌈ p

piter
⌉. The original paper was

set to prune_frac = 0.05 , which corresponds to 10
iterations. To reduce the time to a manageable time,
we increased prune_frac= 0.2, which corresponds
to 3 iterations (20% → 40% → 50% sparsity).

4 Problem Statement and Our
Approach

With piter = 0.05 that means in the setting that
takes 10 runs to get to 0.5 sparsity, and with finetun-
ing, Bonsai shows great promise. It receives state-
of-the-art results in 4/6 tasks on the Huggingface
Open LLM Leaderboard in its parameter category.
However, one notable exception to this generally
good performance is its performance on the GSM-8K
dataset, which is a mathematical reasoning dataset
(described further in 5with barely achieving 6% ac-
curacy in its best hyperparameter setting.

In our reconstruction, with the settings of piter =
0.20, that means in the setting that takes 3 runs to
get to 0.5 sparsity and without finetuning, we receive
the results as seen in Table 2. The reasons for devia-
tions taken from the original paper are described in
section 3.1

4.1 Approach

Given the low performance as seen in Table 2, our
research question is

3

Method Adapted Wikitext-2 BoolQ HellaSwag WinoGrande ARC-e ARC-c Avg GSM-8k (5 shot)
Bonsai ✓ 10.92 67.22 43.09 61.64 54.92 26.28 50.63 6.37
Ours x 46.594 51.66 29.07 52.13 26.54 19.75 35.83 0

Table 2: Post-pruning Performance on Various Datasets, pruned with respect to Perplexity on Wikitxt-2.
Note that these are not on the same hyperparameters as the paper. Performance on GSM-8K not included

in average calculation.

“How can we improve Bonsai’s method for
better performance of mathematical and
logical reasoning tasks?"

In this work, we propose integrating a novel metric
into Bonsai’s regression-based pruning framework.
This new metric takes into account the lexicographi-
cal similarity, semantic similarity, and accuracy of a
model’s generated output compared to the ground
truth rationale and answer. We hypothesize that
by pruning with respect to this more comprehen-
sive metric, the final sparse network will exhibit
improved performance on the GSM-8K dataset and
other mathematical and logical reasoning task.

The key idea behind our method is based on the
observation that while methods discussed in section
2.3 and other works in the pruning literature prune
with respect to perplexity (choosing values such that
the perplexity of the new pruned model is smaller).

However, we observe that Bonsai offers a unique
flexibility in this regard. Given that it is formated
as a under specified regression problem as seen in
Equation 2, 1 with respect to some metric U . While
other methods require U to have certain desired
qualities like differentiability, in this formulation any
reasonable metric can be a suitable candidate for U .
Reasonable metric here implies that the metric is well
defined and a high score U corresponds to the desired
behaviour of the model. In our case, this allows us
to use accuracy with respect to the ground truth,
similarity scores as compared to CoT/rationale, or
some combination of these metrics.

Thus, let {Mi}ni=1 be the set of n-desired metric
that we want in our final model (accuracy, lexigraphi-
cal similarity, semantic similarity, or any task-specific
metric). Then we can define

U† =

n∑
i=1

aiMi where
n∑

i=1

ai = 100 (3)

Here ai refers to the weight of metric Mi in the
final metric U†. The formulation of Bonsai as a
regression problem with respect to this new metric
U† remains the same as Equation 2. Note that the
desired metrics should be bounded.

We note that metric in Eq 3, can be any combi-
nation (non-linear) of M ′

is. However, in our further
study we only consider the linear combinations of
{Mi}ni=1. The details of the combined metric used in
our ablations are covered in further detail in Section
6.5. e discuss different combinations of these metrics
that we experimented with and the results seen in
later sections of the report.

5 Datasets
Given your focus on mathematical and logical rea-
soning, there are broadly two categories of datasets
we looked at (1) focused more on math and (2) fo-
cused more on logical reasoning. In this section, we
provided a brief description of each of the datasets
we used in our evaluations and why we chose them.
The performance on these datasets is discussed in 7.

5.1 Mathematical Reasoning Datasets
5.1.1 Grade School Math-8k: (GSM-8k)
Cobbe et al. (2021) curated a dataset of Grade
School Math problems. The key characteristic of
this dataset that we leveraged was the inclusion of
a rationale that explains the reasoning between the
question and the final answer. Additionally, the final
answer to the problem was also identifiable by itself.
Thus, they motivated the use of several metrics: ac-
curacy based on the ground truth final answer and
similarity metrics on the rationale. While this may
seem specific, note that many reasoning datasets do
not include both the rationale and answer as sepa-
rately identifiable information. This dataset remains
one of the hardest datasets for most language models,
notably the small LMs. An example of the dataset
is shown in Figure 2.

5.1.2 MMLU Elementary Math
(hendrycksTest-elementary_mathematics)

MMLU (Massive Multitask Language Understand-
ing) is a new benchmark that measures pre-trained
knowledge in models using zero-shot and few-shot
settings, similar to how humans are evaluated. It
covers 57 subjects across various disciplines, rang-
ing from elementary to advanced professional levels
(Hendrycks et al., 2021b,a). For our analysis, we fo-
cus on elementary math problems, as gsm8k proved
too challenging for the sparse, non-fine-tuned models
we are considering. This subset of MMLU allows us
to assess the models’ problem-solving abilities and
mathematical knowledge at a fundamental level. The
following is a sample question from the said dataset.
See the Figure 4 for more details.

5.2 Logic Datasets
BoolQ BoolQ is a question answering dataset for
yes/no questions containing 15942 examples of nat-
urally occurring questions—they are generated in
unprompted and unconstrained settings. Each ex-
ample contains (question, passage, answer) tuple,
with some containing the title of the passage (op-
tional additional context). The task is to answer a

4

true or false question based on the given context. In
this regard, the task is similar to nlp inference and
deduction tasks (Clark et al., 2019).

HellaSwag HellaSwag evaluates the model’s com-
mon sense reasoning by evaluating the sentence com-
pletions given a certain context. The model has to
choose the most likely ending to the given sentence.
These are completions that require an understanding
of everyday activities and human behavior (Zellers
et al., 2019).

ARC-e, ARC-c AI2 Reasoning Challenge (ARC)
contains easy and challenge question sets based on
natural, grade-school science questions of 7,787 ques-
tions. This is a multiple choice dataset where most
questions contain 4 answer choices (around 1% with
more or less than 4 choices) (Clark et al., 2018).

WinoGrande WinoGrande is a collection of
44,000 problems that are formulated as a fill-in-a-
blank task with binary options. The goal of this
dataset is to test the commonsense and logical rea-
soning abilities of language models to fill in the right
option given the context and knowledge of the world
around us (ai2, 2019). See 3 for more details.

Big Bench Logical Deduction BIG-bench is
a collaborative benchmark with 204 tasks across
various topics, created by over 450 contributors from
132 institutions (bench authors, 2023). Its goal is
to push the limits of language models by providing
tasks that are considered beyond their current
capabilities. For our study, we focus on the "three
objects" questions within the Logical Deduction task
(bigbench_logical_deduction_three_objects).
These questions assess an AI’s ability to perform
logical reasoning and draw conclusions when
given information about three objects and their
relationships.

The task involves arranging a sequence of N ob-
jects based on given conditions. Each puzzle begins
with an initial context for the objects and (N − 1)
conditions that dictate their order. The goal is to
determine the absolute position of each object using
these conditions. The model’s performance is as-
sessed by whether it correctly identifies the position
of objects when queried. Puzzles are uniquely solv-
able and tailored to difficulty levels corresponding to
N = 3, 5, 7, with higher values indicating increased
complexity due to more objects and relationships.
We also note that the performance of models (gpt-
sota) at the time of the release of the dataset was
worse than 1/N (random chance). See Figure 5 for
details.

5.3 Other Datasets
Wikitext-2 WikiText-2 contains the Good and
Featured articles on Wikipedia. The text is not
filtered for English, and still contains the original
punctuation, casing, and numbers (Merity et al.,
2016b).

C4 C4 is a collection of English-based text from
the Common Crawl web scrape (Raffel et al., 2019).
It is insanely large, using 750 GB. Given this, we only
prune using the c4-train.00000-of-01024 split. We
mainly used this dataset as a proof of concept for
pruning on logical reasoning. We saw improvement
in evaluation, hypothesizing that there are more
explanations and reasoning-based text on the web
than there is in Wikipedia.

6 Method
6.1 Existing Codebase
Dery et al. (2024) have released a work-in-progress
codebase on Github 1 which details their novel
gradient-free, perturbative pruning method. Addi-
tionally, it includes code for finetuning pruned models
using the Wikitext-2 (Merity et al., 2016a) dataset.
We did not modify any components of the codebase
except a legacy issue; a dependency included in the
codebase has since been deprecated, so we made the
necessary adjustment to the current version.

6.1.1 Accepted Contributions to the Open
Source Project

We were able to recognize multiple errors with the
code in its existing forms; the two GitHub issues have
been accepted by the authors. The issues pertained
to inconsistency in data types and problems with
evaluation in electronic datasets. There were certain
files that were missing on the codebase that were
needed for the evaluation (namely the customized
file of lm-eval where the authors made certain edits).
The issue regarding updating these files was also
accepted.

6.2 Speedup Modifications
After further exploration of the codebase, we made
a small but important modification. The evaluation
functions are called every time we set a certain mask
to the model to decide which combination of masked
submodules scores higher based on the formula in
2. However, within these evaluation functions, load-
ing the dataset happens every time the function is
called, even though the code is evaluated on the same
dataset.

To mitigate this redundancy, we ended up initial-
izing the dataset once and passing in the processed
version to the evaluation functions. We saw a 2x
speedup in performance for this seemingly small
modification.

6.3 Pruning with Chain-of-Thought Prompt
Borrowing ideas from the section 2.3, our novel con-
tribution to this work is that we utilize the rationale
in our pruning method directly.

1https://github.com/ldery/Bonsai/tree/main

5

6.3.1 Dataset Preparation
Instead of pruning with respect to wikitext for just
completion as done in the original paper, in the pa-
per, we pruning with respect to the GSM-8k dataset.
To curate the dataset for this method to work, we
used the GSM-8k Dataset to create our dataset. The
dataset is in the question-answer format. First, we ex-
tract the rationale and answer based on the splitting
by the answer token (given by #### token). Thus, the
dataset was a tuple of (question, rationale, answer).

6.4 Prompt Creation

To create the prompt, we first prepend the question
with an example to mimic one-shot prompting in
the case of pruning. The first question from the
training set was cast aside as the example question
throughout our experiments. This example is then
prepared for all of the training steps.

In addition, we passed an instruction inspired by
the Large Language Models are Zero-Shot Reason-
ers paper (Kojima et al., 2023). We append the
instruction to think step by step to the model.

Example:{example-question}, Rationale:
{example-rationale}, Answer : {example-
answer}.

+ Question: {new-question}

+ "Let’s think step by step to get the ratio-
nale and the answer:"

This is then passed onto the model to generate
rationale and answer. We used the generated out-
put for calculating the metric described in eq (4).
The perplexity is also calculated on the same model
output.

6.5 Novel Metric

As introduced in Section 4.1, the main contribution of
this work is the realization that the metric U can be
more task-specific. We integrate our proposed metric
in the original bonsai code. Instead of U = ppl, our
proposed metric has the following structure:

U = A ∗ lex_sim+B ∗ cos_sim+ C ∗ACC (4)

Here lex_sim, cos_sim, and acc represent lexico-
graphical similarity, semantic similarity (as mea-
sured by cosine similarity), and accuracy, respec-
tively. A,B,C ∈ [0, 100] are the weights of each
component and represent how much the component
contributes to the value of the metric under the
constraint A+B + C = 100 (see also Equation (3)
in Section 4.1). All components of this metric are
bounded between 0 and 1, thus we multiply their
values by sufficiently large weights for the sake of
readability. Each component of the metric is meant
to serve a particular purpose:

Lexicographical Similarity (lex_sim) This
component focuses on the similarity of words and

their arrangement between two texts and is calcu-
lated purely based on the surface form of the words
in a text, their order, and their syntactic structure. If
the model-generated answer and the ground truth an-
swer share many common words in a similar ordering,
they would be considered to have high lexicograph-
ical similarity. For our purposes, lexicographical
similarity can be used to measure the presence of
similar equations between texts and the relationships
between subjects, eg. does the generated answer con-
tain the same numbers in roughly the same order
as the ground truth answer? Are the same actions
occurring between the same subjects (ie. "Mary gave
Jane 2 apples" versus "Jane gave Mary 2 apples")?
However, this component may fail to capture similar-
ity in meaning if the wording or syntax is different
between two texts despite underlying concepts being
equivalent. We calculate lex_sim using F1 score,
which is a function of precision and recall that takes
into account the proportion of similar words between
the two texts versus the proportion of dissimilar
words.

Semantic Similarity (cos_sim) This component
evaluates the similarity between texts in terms of
their meaning or semantics, irrespective of the spe-
cific words used or their arrangement. Even if the
model-generated answer and the ground truth answer
use different words or structures, they can still be con-
sidered semantically similar if they convey the same
idea or concept. For our purposes, this provides us
with some flexibility regarding the model-generated
answer in that there is less pressure to mimic the
verbiage or structure of the ground truth. Semantic
similarity in our metric is calculated using cosine
similarity, the distance between two non-zero vec-
tors defined in some inner product space. We used
the all-MiniLM-L6-v2 HuggingFace checkpoint 2 of
Sentence-Bert (Reimers and Gurevych, 2019) to map
the generated and ground truth rationales to a 384-
dimensional dense vector space. Cosine similarity
was then calculated using the following formula:

sim(θ) =
U · V

||U || · ||V ||

Accuracy (acc) This last component measures
whether the ground truth answer is present in the
model-generated answer. We calculate accuracy us-
ing exact match; acc = 1 for a given an example if
the ground truth answer is present anywhere in the
generated answer as a standalone value (e.g., if the
ground truth answer is "12", the string "512" in the
generated answer will not be counted as a match).

It was not clear to us how the answer token can
be directly extracted from the output. As the model
is pruned, it loses its ability to follow instructions,
especially when not fine-tuned. This means that we

2https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

6

could not rely on splitting by a specific answer token.
To overcome these challenges, instead of accuracy, we
used exact matches. We note that EM ≥ Accuracy,
and our rationale was that a higher EM score should
correspond to a higher accuracy (or at least a higher
probability of getting an accurate answer).

The combination of components in these metrics
in our combined metric allows us to measure the
quality of model-generated rationale as well as the
model’s ability to arrive at the correct answer. This
combination also captures scenarios where only the
rationale or the final answer is correct, painting a
more holistic picture of the model’s performance.

An interesting observation when we initially ran
results is that cosine similarity numbers were high,
normally within the 0.4 to 0.7 range. Thus, we
downweighted this metric slightly, and increased the
weighting for lexicographical similarity and accuracy,
which showed higher variance. This motivates one
of our pruned models on GSM-8K to have weighting
38-24-38.

Note: For the datasets under GSM-8K that are
followed by a-b-c, this describes the weighting of
lexicographical similarity, cosine similarity, and ac-
curacy in our pruning metric, respectively.

7 Results

For our ablation studies, we ran various combinations
of weights in Equation (4). We also experimented
with evaluating different datasets (namely GSM-8K
and C4) using the original method of perplexity alone.
Most of our models were pruned to 0.5 sparsity under
the settings described in section 3.1, meaning 50%
of the original parameters were removed. This was
done to match our baseline and the original Bonsai
model’s numbers.

Based on Table 3, we note that the baseline pruned
model, i.e., our Assignment 3 reproduction, scores
highest for the mathematical reasoning datasets.
However, our pruned model using perplexity on the
GSM-8K dataset yields higher results for most of the
logical reasoning datasets. This could be explained
by the rationale provided in the GSM-8K dataset,
which contains more specific and detailed mathemat-
ical reasoning that translates to logical reasoning.
See Table 3 for details.

Additionally, we also evaluated certain models
with target sparsity 0.4 (retaining 60% of the model
weights). Interestingly, pruning with GSM-8K yields
higher scores than the baseline across the board
when retaining just 10% more parameters. While
the results for the sparsity of 0.5 are not significant
enough, we see that in the case of 0.4 sparsity, the
model pruned on GSM-8K outperforms the baseline
as seen in Table 4. The gains are most notable
in Arc-e, HellaSwag, and MMLU-Elemntary Math
datasets.

To illustrate the difference between the sparsities,
consider the dataset point with the question: “Marco

owns an ice cream truck. His ice cream cones are
$5 each. If his expenses are 80% of total sales for
the day, how many ice cream cones would he need to
sell to make a $200 profit for the day?" The given
rationale is “His profit would be 20/100 = 1/5. Total
sales for the day is $200 × 5 = $1000. Total ice
cream cones he sells is $1000/5 = 200." However,
our model with sparsity=0.5 generated something
like “A=10000000000000000" which is not a legible
answer. However, given the presence of 100 in the
output string the similarity scores were decently high.
However, we see a noticeable improvement in the
output quality when we consider 40% sparsity. The
outputted rationale is “80% of 200 = 160. 160/5".
We note that even though the rationale is not correct,
the model gets the math right. However, it is low
in all of the three metrics we have used. This more
coherent, albeit incorrect, explanation demonstrates
that the quality of the generated rationale decreases
when sparsity increases in this case, which motivates
a lot of the numbers we produced in the tables.

Since the accuracy on GSM-8k across all our con-
sidered models was 0; we opted to also test the model
on generation on GSM-8k by calculating the perplex-
ity on the test dataset where only the question was
provided as the context to the model.

We note that for a tokenized sequence X =
(x0, x1, . . . , xt), then the perplexity of X is,
PPL(X) = exp

{
− 1

t

∑t
i log pθ(xi|x<i)

}
where

log pθ(xi|x<i) is the log-likelihood of the ith token
conditioned on the preceding tokens x<i according
to our model. Thus, perplexity is a measure of how
well a probability model predicts a sample. It can be
thought of as the average number of tokens the model
is uncertain about at each step when evaluating a
sequence (the lower, the better). We note that the
perplexity for our new pruned model is 20x lower as
seen in Table 5. We note that this observation is spe-
cific to the 38-24-38 split and 50-50-0 split and is
not seen across all weight combinations. It is possible
that the model achieved some local minimum that
trims the neurons well enough to achieve a relatively
low perplexity on GSM-8k. This is promising for
future work because it means that the model is more
confident in its predictions even though we were not
able to gain accuracy.

8 Discussion

As established before, we wanted to explore a few
things related to the effect of datasets on pruned
model performance and the effect of the metric. The
question is, Does this study provide any conclusive
evidence about how to prune while retaining reason-
ing abilities? Can we improve the baseline perfor-
mance of Bonsai using this metic?. As we can see
from Tables 3 and 3, the answers to these questions
are mixed. In this section we consider some of the
learnings and observations from the ablations. This
section focuses mostly on the results on sparsity of

7

WikiText-2 ppl C4 ppl GSM-8K GSM-8K GSM-8K GSM-8K GSM-8K
A3 baseline ppl 0-0-100 38-24-38 50-50-0 1

3 -
1
3 -

1
3

WinoGrande 0.5213 0.4929 0.5024 0.5308 0.5197 0.4913 0.5087
BoolQ 0.5166 0.5814 0.6051 0.4976 0.5466 0.4787 0.5798
ARC-c 0.1975 0.1975 0.2180 0.1817 0.1943 0.1975 0.1833
ARC-e 0.2654 0.2338 0.2828 0.2433 0.2464 0.2370 0.2370

HellaSwag 0.2907 0.3128 0.3333 0.2812 0.3112 0.2954 0.2938
Avg 0.3583 0.3637 0.3883 0.3469 0.3637 0.3400 0.3605

GSM-8K acc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MMLU 0.2698 0.1958 0.2222 0.2698 0.2593 0.2593 0.2540

BigBench 0.3810 0.3598 0.2910 0.3598 0.3598 0.3598 0.3757
Avg 0.21693 0.18519 0.17107 0.20988 0.20635 0.20635 0.20988

Table 3: Performance comparison across logical and mathematical reasoning datasets for target sparsity=0.5.
Note that the datasets listed in rows on the left dictate which evaluations were run. The datasets and
corresponding descriptions across the top describe what we pruned LLaMa2-7b on. The mathematical
reasoning datasets used 5-shot prompting, similar to how it was done with Bonsai (Dery et al., 2024).

WikiText-2 GSM-8K GSM-8K GSM-8K
ppl ppl 0-0-100 38-24-38

WinoGrande 0.50079 0.53081 0.50237 0.52449
BoolQ 0.58926 0.61295 0.51975 0.61611
ARC-c 0.22117 0.24803 0.19905 0.21485
ARC-e 0.36493 0.40916 0.32543 0.35703

HellaSwag 0.33333 0.39021 0.31754 0.33649
Avg 0.4019 0.4382 0.3728 0.4098

GSM-8K acc 0.00152 0.00000 0.00000 0.00455
MMLU 0.25926 0.28042 0.26984 0.24868

BigBench 0.32804 0.38095 0.37566 0.42857
Avg 0.19627 0.33069 0.21517 0.22727

Table 4: Performance comparison across logical and mathematical reasoning datasets for sparsity=0.4. The
table is structured similar to Table 3

WikiText-2 ppl GSM-8K
A3 baseline 38-24-38

GSM-8K ppl 365.5226 17.1083

Table 5: GSM-8K perplexity performance
comparison for specific pruned models with target

sparsity=0.5.

0.5; similar trends apply for sparsity 0.4 as well.

8.1 Choice of Dataset for Pruning
The first observation we make is that a richer and
more in-domain dataset for perplexity can have a big
impact on the performance on downstream reason-
ing tasks. As described in the 6.3, we incorporated
an example and instructions for what we can call
guided pruning. We see that in the 0.5 sparsity set-
ting, this leads to an increase in accuracy in 5 out of
the 8 datasets we have considered. Surprisingly, the
gain was most notable in the datasets that we cate-
gorized as more logical reasoning-oriented, whereas
the change in performance in the mathematical rea-
soning tasks was either lower or not significant. It
might be that the weights that the method pruned

based on perplexity on GSM-8K did not translate
well to other tasks of similar difficulty, but were more
suitable for datasets that might not need as much
abstractive thinking. However, we are unsure of the
exact reason why this might be happening.

8.2 Combined Metric Needs Tuning

As defined in eq 4, our metric was a linear combina-
tion of semantic similarity, lexicographic similarity,
and accuracy. As discussed in section 6.5, accuracy
was hard for us to measure as we were unsure how
to extract the answer from a free generation of the
model output. Therefore, an exact match, as detailed
in the section, was used to approximate accuracy. We
note that EM ≥ ACC (see Limitations). However,
in our studies, we saw that even the exact match was
very low (close to 0 as the model approached the 0.5
sparsity). Therefore, in most of the iterations, the
contribution of the last term in the metric was 0.

We used Sentence-BERT (sentence-
transformers/all-MiniLM-L6-v2) with an embedding
space of 384 for calculating cosine similarities. We
note that we found the semantic similarity, as
calculated by this model to to be high across the

8

board for our generated output and rationale. In
our testing based on very high similarity scores, we
found that the score was high even for two not so
related sentences.

For instance, the sentences = (‘This is a test that
checks different length sentences,’ ‘I love my cat’)
gave us a cosine similarity of 0.114 despite not be-
ing semantically related. We suspect this model’s
small embedding space is unable to capture the se-
mantics of the sentences well, especially in our more
reasoning-based task. In future work, we want to use
the embeddings of the Llama Tokenizer to guide the
similarity scores, as we believe these will be richer
and be able to capture the differences between two
sentences better.

No apparent trend based on the weights: As
we can see in the table 4, 3 there is no apparent
trend in terms of which measure better encapsulates
the differences in performances.

We hypothesize that our steps of trimming 20% of
model weights each step might be too drastic for the
model. The original paper trims 5% of the weights for
each iteration, but due to computing resources and
our desire to study different combinations in terms of
the make of the metric in Equation 4, we chose this
number. However, a more granular pruning step will
be better suited to study the important questions
like: What is the effect of each component of
the metric in navigating the regression space?
What is the sparsity level where the loss in
performance to the model size trade-off is at
a desired level?

8.3 Limitations

Resource constraints lead to major limitations in our
approach, the most impactful two being the reduced
number of tokens in generated responses and the
reduced granularity of our pruning iterations. Addi-
tionally, our definition of the accuracy component of
our metric also presented problems.

Our approach initially involved generating 100
tokens after the initial input prompt, however,
during experimentation we found the runtime for
n_tokens = 100 to be prohibitively long. To fin-
ish all of our experimentation, we were required to
cut this number down drastically to n_tokens = 20
for some experiments. This led to a considerable
speedup but removed a significant amount of infor-
mation from our metrics. As expected, for the heavily
abridged generated responses, both lexicographical
and semantic similarity decreased significantly. With
the reduced number of tokens to generate, we oc-
casionally observed instances where the generated
output appeared to be on a promising trajectory ("on
the right track") toward the correct reasoning before
reaching the token limit. As a result, we expect mod-
els pruned using the masks generated from shortened
generated outputs to perform comparatively poorly
at inference time.

As originally described in A3, we were also forced
to reduce the granularity of our pruning iterations
due to runtime. The original Bonsai paper reached
50% sparsity by performing 10 iterations of prun-
ing 5% of parameters each iteration, whereas we
performed 3 iterations pruning 20% of parameters
each iteration. This resulted in less computational
overhead but also increased the risk of performance
degradation since critical information or representa-
tions of the original LLM were likely abruptly lost.

Our measure of accuracy in this project was also
not the most appropriate. In Section 6.4, we de-
tailed how we determined correctness based on the
presence of the ground truth answer string in the
generated output. This is clearly a fallible method,
as the output "There were 3 ∗ 5 = 15 apples, they
bought 25 in total" would be marked as correct if
the ground truth answer was "15", but the model
still technically answered incorrectly. Despite our
pruned models generally exhibiting 0% accuracy dur-
ing pruning, this definition of accuracy increases the
likelihood that the few non-zero accuracy values we
did observe during the pruning process were false
positives and spuriously increasing the value of the
combined metric.

Though these three major limitations combined
reduces confidence in our findings, we hope to mit-
igate them in future work since the constraints we
faced were almost entirely resource-based.

9 Future Work
Despite being inconclusive, we see that pruning with
respect to GSM-8K while incorporating an example
and rationale leads to higher model confidence as
measured by lower perplexity in Table 5 and higher
accuracy on logical reasoning datasets as seen in
Table 3. There are things we wish to incorporate
in future work and to address the limitations of our
current approach.

As highlighted in the section above, we would like
more granular trimming if we had more computing
resources available. This would help us not only
gain better performance but also better understand
the trade-off between different metrics, model size
vs. model performance. In addition, incorporating a
richer embedding model to use for cosine similarity
would be a better approach going forward.

As we saw in the discussion of model performance,
our model’s low perplexity was not seen across all
combinations of hyperparameters. Given more time
and compute, an exploration of hyperparameters, in-
cluding the ones in the paper and the ones introduced
by our metric would be a fruitful study.

On a more theoretical side, Bonsai could be fur-
ther strengthened by choosing β′s for the regression
problem in Equation (2) more dynamically. We pro-
pose the incorporation of Bayesian Linear Regression
instead of the simple linear regression that assumes
a uniform prior in the current approach.

9

References
2019. Winogrande: An adversarial winograd schema

challenge at scale.

BIG bench authors. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar
Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. 2018. Think you have solved
question answering? try arc, the ai2 reasoning
challenge.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Lucio Dery, Steven Kolawole, Jean-Francois Kagey,
Virginia Smith, Graham Neubig, and Ameet Tal-
walkar. 2024. Everybody prune now: Structured
pruning of llms with only forward passes. arXiv
preprint arXiv:2402.05406.

Dan Hendrycks, Collin Burns, Steven Basart, An-
drew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. 2021a. Aligning ai with shared human
values. Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. 2021b. Measuring massive multitask
language understanding. Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A sur-
vey. arXiv preprint arXiv:2212.10403.

Seungone Kim, Se June Joo, Doyoung Kim, Joel
Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
Seo. 2023. The cot collection: Improving zero-
shot and few-shot learning of language models via
chain-of-thought fine-tuning.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2023. Large
language models are zero-shot reasoners.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang
Ren, Kai-Wei Chang, and Yejin Choi. 2023. Sym-
bolic chain-of-thought distillation: Small models
can also "think" step-by-step.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Stephen Merity, Caiming Xiong, James Bradbury,
and Richard Socher. 2016a. Pointer sentinel mix-
ture models. arXiv preprint arXiv:1609.07843.

Stephen Merity, Caiming Xiong, James Bradbury,
and Richard Socher. 2016b. Pointer sentinel mix-
ture models.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Explor-
ing the limits of transfer learning with a unified
text-to-text transformer. arXiv e-prints.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Siyu Ren and Kenny Zhu. 2022. Specializing pre-
trained language models for better relational rea-
soning via network pruning. In Findings of the As-
sociation for Computational Linguistics: NAACL
2022, pages 2195–2207.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities into
smaller language models.

Ying Su, Jipeng Zhang, Yangqiu Song, and Tong
Zhang. 2024. Pipenet: Question answering with
semantic pruning over knowledge graphs. arXiv
preprint arXiv:2401.17536.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Yueqing Sun, Qi Shi, Le Qi, and Yu Zhang. 2021.
Jointlk: Joint reasoning with language models
and knowledge graphs for commonsense question
answering. arXiv preprint arXiv:2112.02732.

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. 2023a. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023b. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. 2023. Chain-of-thought prompt-
ing elicits reasoning in large language models.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen.
2022. Structured pruning learns compact and ac-
curate models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

10

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/2305.14045
http://arxiv.org/abs/2305.14045
http://arxiv.org/abs/2305.14045
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2306.14050
http://arxiv.org/abs/2306.14050
http://arxiv.org/abs/2306.14050
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2212.00193
http://arxiv.org/abs/2212.00193
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2204.00408
http://arxiv.org/abs/2204.00408
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu,
Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. 2021. Learning n:m fine-grained struc-
tured sparse neural networks from scratch.

A Appendix

Figure 2: GSM8k example from Cobbe et al. (2021)

Figure 3: WinoGrande Dataset Example Questions

Question: Ms. Perez drove a total of 40 miles
in 5 days. She drove the same number of miles
each day. How many miles did Ms. Perez drive
each day?
Choices: ["5", "7", "8", "9"].
Answer: C

Figure 4: MMLU dataset example

Figure 5: Big-Bench Logical Deduction Task
Example

Note that the model is rated based on the answer
with the highest probability(bench authors, 2023)

(source github-logical-deduction)

11

http://arxiv.org/abs/2102.04010
http://arxiv.org/abs/2102.04010
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/logical_deduction

	Introduction
	Background
	Pruning Overview
	Limitations of Gradient-Based Pruning Methods
	Improving LLM Reasoning

	Bonsai: Method and Limitations
	Limitations in Recreating & Deviations from the Original Results

	Problem Statement and Our Approach
	Approach

	Datasets
	Mathematical Reasoning Datasets
	Grade School Math-8k: (GSM-8k)
	 MMLU Elementary Math

	Logic Datasets
	Other Datasets

	Method
	Existing Codebase
	Accepted Contributions to the Open Source Project

	Speedup Modifications
	Pruning with Chain-of-Thought Prompt
	Dataset Preparation

	Prompt Creation
	Novel Metric

	Results
	Discussion
	Choice of Dataset for Pruning
	Combined Metric Needs Tuning
	Limitations

	Future Work
	Appendix

